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Abstract

A new three parameter lifetime model, called Odds Generalized Lindley-Pareto distribution (OGLPD) is proposed
for modeling lifetime data. A comprehensive account of the mathematical properties of the new distribution
including estimation is presented. A data set has been analyzed to illustrate its applicability.

Keywords: Lindley distribution; Pareto distribution; Maximum likelihood estimation; Odds function; Transformed-
Transformer family of distributions.

1. Introduction
Modeling of any real world phenomenon gets complicated. Statistical distributions are important for parametric
inferences and also are commonly applied to describe real world phenomenon. Due to the usefulness of statistical
distributions, their theories are widely studied and new distributions are developed. A humber of methods have been
developed to generate statistical distributions in the literature. Some methods are developed in the early days for
generating univariate continuous distributions include methods based on differential equations developed by Pearson
(1895), methods of translation developed by Johnson (1949), and methods based on quantile functions developed by
Tukey(1960). At the end of twentieth century, McDonald (1984), Azzalini (1985), Marshall and Olkin (1997)
proposed some general methods for generating a new family of distributions. In twenty first century, Eugene et al.
(2002) proposed the beta-generated family of distributions, Jones (2009) and Cordeiro and de Castro (2011)
extended the beta-generated family of distributions by using Kumaraswamy distribution in place of beta distribution.
Alzaatreh et al. (2013) proposed a generalized family of distributions, called T-X (also called Transformed-
Transformer) family, whose cumulative distribution function (cdf) is given by
F(x:6) = ["““o@at, 1.1)

where, the random variable T € [a, b], for —o < a,b < and W[G(x)] be a function of the cdf G(x) so that
WG (x)] satisfies the following conditions:

() WIG(x)] € [a,b],

(i) WG (x)] is differentiable and monotonically non-decreasing,

(iii) W[G(x)] 2 aasx - —oand W[G(x)] = b asx — .

I have defined a generalized class of any distribution having positive support. Taking

F,(x
W (F,(x)) = A , the odds function, the cdf of the proposed generalized class of distribution is given by

1- Fe(x)
Fg(x)
F(x|4,60) = me f,(t)dt. (1L.2)
. . _AAHY) . o
In the present paper, we choose particular choice of f/I t) = ﬁe i.e. the Lindley distribution and
+

17
a
F,,(x)= 1—[—} i.e. Pareto distribution in (1. 2 ). Hence, I call this distribution as Odds Generalized Lindley-
' X

Pareto distribution (OGLPD).

The paper is organized as follows. The new distribution is developed in section 2. A comprehensive account of
mathematical properties including structural and reliability of the new distribution is provided in section 3.
Maximum likelihood method of estimation of parameters of the distribution is discussed in section 4. A real life data
set has been analyzed and compared with other fitted distributions with respect to Akaike Information Criterion
(AIC) in section 5. Section 6 concludes.
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2. Formation of Odds Generalized Lindley-Pareto Distribution
The c.d.f. of the distribution is given by the form as

0
X
0 1+ A — x)’

A2+ X) (a} ‘{[a) ‘1]

F(X: = [aj A RHX) —1-— %7
(Xi4.0.3) Io 114 dx 114 ¢ (2.3)

Also the p.d.f. of the distribution is given by

129201 _A{(g)e_l}

f(x; A, 9, a) = We

3. Statistical and Reliability Properties
3.1 Limit of the Probability Distribution Function

(2.4)

0
X 0
;)
Since the c.d.f. of this distribution is F(X) = Lﬁe 2
+

So limysa F(X)=0ie F(a)=0

Now fim x F(X) =1 ie. F() =1
3.2 Descriptive Statistics of the Distribution
The mean of this distribution is as follows:

290 " ,,159 p
y'=E(X)=ij O P 1ioa
. 1+ A)a% Ja 1

(L+ A) A7

The median of the distribution is calculated by the equation

) e

@+A)

N |-

1
o (20-1)e
The mode of the distribution is a|
A0
The r' order raw moment of the distribution is as follows:
0
/12&1 - -~ -2 X arel r
E(X r) =—j X201 [aj dx =—rF —+2,4
+ —
0
(l+ /1)), (3.5)

Now putting suitable values of r in the above equation, | get Variance, Skewness, Kurtosis and Coefficients of
variation of the Odds Generalized Lindley- Pareto Distribution (OGLPD).
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Figure 1: The probability density function of the OGLPD
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Figure 2: The probability density function of the OGLPD

Characteristic Function (CF):
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Cumulant Generating Function (CGF):

Ky =l M ({t)=h >
B TYIY)

Mean Deviation:
The mean deviation about the mean and the mean deviation about the median are defined by

00

r

rad

ae
|

—+2,A

A=11,6-2, a=1
— A=12,0=2,a=1
— A=13,0=2,a=1
2 3 4 5
X
A=1,0-22 a=2
— A=1,0=-24,a=2
— X=1,0=26, a=2
4 8
X
(3.6)
(3.7)
(3.8)
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4
1’ 1+i{ﬂj (4]
a a *a
2¢* -T| =+2, ‘fg —u e \®
-\ 6 a 1+ 4
1+ A) A0
(3.9)
A
ae A
MDM:_y+2————TF( +2, 72
= a
@+ )¢ (3.10)
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Figure 3: The probability density function of the OGLPD
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Conditional Moments:
The residual life and the reversed residual life play an important role in reliability theory and other branches of
statistics. Here, the r'" order raw moment of the residual life is given by

() = EIX ~t)" | X >1] =%®T(x—t)r f (x)dx

Figure 4: The cumulative distribution function of the distribution
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The r'" order raw moment of the reversed residual life is given by

" (1+z){1+lzﬂtjg}el{(aj of 1= Z( v (J gi (;+Mj r(éu,%:ﬂ
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Figure 5: Mean, median, mode and variance of the distribution
L-Moments:

Define Xk be the k' smallest moment in a sample of size n. The L-moments of X are defined by

r-1
A, = 1Z(—l)k r-1 E[X,,,. ] r=12,.
ri=o
k
Now for OGLPD With parameter A, & and a, | have

e = G 1),( 5 L XF O F (01 dF (0
So the first four L- Moments are,

A= E[Xm]: Lll"(%+2,/1)
1+ A)A?
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Figure 7: Skewness and Kurtosis of the OGLPD with different values of A
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Quantile function:
Let X denotes a random variable with the probability density function 2.4. The quantile function, say Q(p), defined
by F(Q(p)) = p is the root of the equation

AR e
1+ 4 (3.11)

3.3 Incomplete Moment, Bonferroni and Lorenz curves
The r order incomplete moment of the OGLPD is

Ly [ e’a" r r t)’
m, (t) :ix f(x)dx:—r{F(EJrZ,ﬂjF[5+2,/1[g] ﬂ

A+ 2)A° (3.12)
The Bonferroni and Lorenz curves are defined by
m, (x
B(p) = oxe)
Pu (3.13)
and
m, (x
L( p) — 1 ( p)
(3.14)

Respectively, where u=E(X) and x,=F*(p) which is to be calculated numerically using 3:10 for given p.

3.4 Order Statistics

Suppose Xi, Xo Xz.. X, is a random sample from Eq.2.4. Let Xqg, X@, X@) Xm), denote the
corresponding order statistics. It is well known that the probability density function and the cumulative distribution
function of the k™" order statistic, say Y = X, are given by

y 0 k-1 [(VT ] n—k+1
k| 1442 vy A (2]
o e Y1~ (aj AL]| et
)= (k-D'(n—k)! a* {1”{5} } s © 1+ 4
and (3.15)

3819



International Journal of Early Childhood Special Education (INT-JECSE)
DOI:10.9756/INTJECSE/V1415.431 ISSN: 1308-5581 Vol 14, Issue 05 2022

i n-j

o (y) = z{ J L a) l@ RO l@ AT

1+4 1+ A4

(3.16)
3.5 Entropies
An entropy of a random variable X is a measure of variation of the uncertainty. A popular entropy measure is Renyi
entropy (Renyi 1961). If X has the probability density function f(x), then Renyi entropy is defined by

H.(B) = —'Bln 2 (x)dx

(3.17)
He®) = -2 o +ina+ 22 (Zﬁ_§+%)1
+ lnF(Z,B—£+1/1,B>— k In(1+A4)
1-p8 0 06’ 1-p
Shannon measure of entropy is defined as
n A
H(f) =E[-Inf(X)] = —-A-—1Inf +1Ina —%H n(l1+21) +e—F(3,A)
et (3.18)
1+1)6 I2@n
3.6 Reliability and related properties
The Reliability function is given by
4
X
1+ /q,(j —A[[fjg_lj
R(X)=1-F(x)=— 2/ ¢ (2
1+4 (3.19)
and the Hazard rate function is given by
f(t 20
r(t) — ( ) — t26’—1
1-F(x) ,, t)’
a”|1+ 4 —
a
(3.20)

/12@(2971 el{(aj 71}

Now, f (X) = W

9
ie.In f(x)=2INnA+In@+(260-1)In x+/1—/1(5j —In(1+2)-20Ina
a

d 20-1 Ax?
So —In f(x)= —
° dx ) a’
o|2 29 1 20(0-1)x"*
In f(x)=- 0

d2
ForA>0,0>1,a>0and x>0, d—2|n f(x) <0.
X

So, the distribution is log-concave. Therefore, the distribution posses Increasing failure rate (IFR) and Decreasing

Mean Residual Life (DMRL) property.
2

d
ForA>0,0<6<1,a>0andx >0, d—2|n f(x) > 0.
X
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So, the distribution is log-convex. Therefore, the distribution posses Decreasing failure rate (DFR) and Increasing
Mean Residual Life (IMRL) property.
Mean Residual Life (MRL) function is defined as

t.o
@ At? At®

m() =EX —t|X>t) = ;W[i%r(z +2,55) —tr@2%5)|. (3.21)
a A

Reversed Hazard rate:
22020 —1{(2]8—1}
— €
f(x) (@+4)a*

u(x) = =
F(x) x )’ ,
1+ 4] — "ﬁ[(ij _1]
a
1-— %2 o V2
1+4 (3.22)
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Figure 8: Hazard rate and Reversed Hazard Rate of the OGLPD with 6 > 1
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Figure 9: Hazard rate and Reversed Hazard Rate of the OGLPD with 6 < 1
Mean Inactivity Time (MIT) or Mean Reversed Residual Life (MRRL) function is defined as
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1 ae?

m () =E(t—X|X<t) = [t{['(2A)- r(z,fx—fg)} = é{r(z +2,) -T2 +5,55)}

el

1+l—[1+l(£)9]e_l((é)9_1)
(3.23)
3.7 Stress-Strength Reliability
The Stress-Strength model describes the life of a component which has a random strength X that is subjected to a
random stress Y. The component fails at the instant that the stress applied to it exceeds the strength, and the
component will function satisfactorily whenever X > Y. So, Stress-

20 20
2=01, 6=11, a=1 2=0.1, 0=1.1, a=1
— 2202, 0=11, a=1 — 2202, 0=11, a=1
15 — %=03, 0=11, a=1 15 | #=03 0=11a=1
= =
~ 10 ~ 10
o |l
5 5
0 0
1 4 7 10 1 4 7 10
t t
Figure 10: Mean Residual Life (MRL) and Expected Inactivity Time (EIT) of the OGLPD with 6 > 1
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Figure 11: Mean Residual Life (MRL) and Expected Inactivity Time (EIT) of the OGLPD with 6 < 1
Strength Reliability is R = P(Y < X). Let, X; ~ OGLPD(1,,6,,a,) and X, ~ OGLPD(A,,0,,a,) be independent
random variables. Then, the Stress-Strength Reliability is

1,26, eM1t22 0 x =2 (i)91_/1 (L)Gz
R =P, <X)=1- — 207 fal[l + AZ(Q_Z)BZ]ngl le "a a2’ " dx

(1+21) (1 +Az) e’

If 6, =6, =20,then
2 A+ 12/1+/1—a19 13/1+/1—a19
A %e 1142 (2 A4 20,29) A, G4 2,0

R =

1- +
A+)A+)a? | (G422 @ (G423
1 2 1

Also if ; = a,, then
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/1126)‘1_”‘2
A+ )+ )+ 1,)? [
4. Estimation of the Parameters

Here, | estimate the parameters of my model by using the method of Maximum Likelihood Estimation (MLE). The
log-likelihood function is

InL(x;4,6,a)=2nIn 2+nln@+ni-2nfna-nin(1+ 1)+ (20 -1 Inx, —iQZXiH
i=1 a g

y)
[, +21,)+—>—rI3,MA + /12)]

R =1
M+ A,

Now the Likelihood function will be maximum at & = Xy ; the smallest order statistics in the given sample of size

n. The MLEs of 6 and A are the roots of the two normal equations.

. A n n 0
oln L(X’ﬂ’e’a):E—anna+22Inxi—ﬂZ %l ﬁj:o (4.24)
o6 0 izl i1\ a a
and
. A n 6
oInL(x;4,0,48) :@Jr BN o (210 (4.25)
Y A 1+ 4F\a

I estimate of the parameters 0 and A by solving the two equations using numerical method where & = Xay -

5. Data Analysis

In this section, | fit the odds generalized Lindley-Pareto model to a real life data set. | consider the data
presented by Murthy et al. (2004) on the failure times (in weeks) of 50 components. The data are: 0.013, 0.065,
0.111, 0.111, 0.163, 0.309, 0.426, 0.535, 0.684, 0.747, 0.997, 1.284, 1.304, 1.647, 1.829, 2.336, 2.838, 3.269, 3.977,
3.981, 4.520, 4.789, 4.849, 5.202, 5.291, 5.349, 5.911, 6.018, 6.427, 6.456, 6.572, 7.023, 7.087, 7.291, 7.787, 8.596,
9.388, 10.261, 10.713, 11.658, 13.006, 13.388, 13.842, 17.152, 17.283, 19.418, 23.471, 24.777, 32.795, 48.105.
Histogram shows that the data set is positively skewed. Thiago A. N. de Andrade, Marcelo Bourguignon, Gauss M.
Cordeiro (2016) fitted this data to the exponentiated generalized extended exponential distribution (EGEE). | have
fitted this data set with the Odds Generalized Lindley-Pareto distribution. The estimated values of the parameters
were A = 0.0682, 8 = 0.5499, a = 0.013, log-likelihood =—150.196 and AIC = 306.391. Histogram and fitted
Odds Lindley-Pareto curve to data have been shown in Figure 12.

Table 1: Summarized results of fitting different distributions for the above data set

Distribution Estimate of the parameters Likelihood AIC
EGEED 4 = 0.3659,b = 0.3103, & = 0.3239, 8 = 0.6041 —151.150 308.300
OGLPD A =0.0682,6 = 0.5499,& = 0.013 —150.196 306.391
(@)
] —
3 e
o' o
> _ ©Q
£ . o
T = ° o
a) 8 — S
. ~
wﬁ‘hs- i
38 _ . — o
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Figure 12: Plots of the estimated pdf and cdf of the OGLPD model for the failure times of 50 components
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6. Concluding Remark

In this article, | have studied a new three parameter probability distribution called Odds Generalized Lindley-Pareto
Distribution. This is a particular case of Transformed-Transformer (T-X) family of distributions proposed by
Alzaatreh et al. (2013). The structural and reliability properties of this distribution have been studied and inference
on parameters has also been mentioned. The appropriateness of fitting the Odds Generalized Lindley-Pareto
distribution has been established by analyzing a real life data set.
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