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Abstract 

Identification hand gestures using electromyogram have been used to improve the performance of tarns radial amputees. 

Information obtained from noninvasive electrode can be used to control hand prosthesis. In this paper, we propose hand gestures 

system for improving performance of trans radial amputees using only two channels bio amplifier. Two hand gestures like hand 

open, hand close are performed by ten subjects and then preprocessed by band pass filter. Reference power used as feature 

extractor. Learning Vector Quantization Neural Network (LVQ) is used to identify pattern. From the identification output, it is 

concluded that the proposed two channel system is possible of online interfacing. 
 

Index Terms—Electromyogram, Hand Prosthesis, Hand Gestures, Reference Power, Learning Vector Quantization Neural 

Network 

 

I. INTRODUCTION 

Electromyography (EMG) may be a process to assess the health of muscles and therefore the nerve cells that management them 

(motor neurons). In medicine, a restorative is a synthetic device that replaces a missing part. Prosthetics square measure supposed 

to revive the conventional functions of the missing part [1]. Upper limb amputations tend to be less common than lower limb 

amputations however will have an effect on individuals of all ages. The foremost common causes of higher limb amputation are 

accidents, infection or burns, tumors or illness, conditions gift at birth [2 &3]. 
 

(Adhiti Gupta et al., 2012) classified completely different hand movements as flexion, extension, adduction, abduction for hand 

control using NN. The information was collected from five subjects and the sEMG signal was acquired using an in-house built 

amplification and acquisition system. A custom-built Lab View application was used to store and record the data. The four 

selected muscles were flexor carpi ulnaris, palmarislongus, extensordigitorum and extensor carpi radialis. From the result it was 

noticed that the finger movements are largely controlled by flexor digitorum and extensors digitorum muscle systems [4]. 

(SatyajitBhowmick et al., 2013) used control of a robotic arm using ANN. EMG extracted from forearm by using instrumentation 

amplifier AD620 and surface gelled disposable electrodes. Participants performed following tasks: right-left, forwards- backwards 

and up-down movements. RMS was used as feature extractor. FFNN with sigmoid hidden neurons was used for pattern 

identification. Network identified the pattern well, validation and test set is found to be 0.999 [5]. Muscle fatigue detection using 

Multi-Layer Perceptron Neural Network (MLPNN) was proposed by (Subasi A et al., 2010). Vector elements were extracted by 

STFT, Smoothed Pseudo Wigner-Ville Distribution (SPWVD), and CWT. Signals were recorded from Right biceps brachii 
muscles. MLPNN with Levenberg- Marquardt and gradient descent algorithms were used for classification. Feature dimensionality 

reduction was done by Independent Component Analysis (ICA). Identification accuracy of 90%, 91% was obtained for Levenberg-

Marquardt and gradient descent algorithms respectively [6]. 

(AlexandreBalbinot et al., 2012) applied neuro-fuzzy system for characterization of arm movements. 8-channel system used for 

signal acquisition. Seven forearm muscles were used for signal acquisition. Hand contraction, wrist extension, forearm rotation, 

wrist flexion, and forearm flexion were recorded. Feature extracted by RMS. Extracted features were applied to neuro-fuzzy 

system. The highest rate of 86% accuracy was achieved for 7 different movements [7]. (J. Senthil Kumar et al., 2013) created a 

low cost prosthetic arm operated by the sEMG signals. Two bipolar sensors were placed on the skin. AR model was used for 

feature extraction and ANN with Back Propagation (BP) algorithm was used for pattern classification. Output of the system was 

effective [8]. 

From the literature survey, we concluded that more number of electrodes is used to increase hand gestures which is decline the 
efficiency and also creates inconvenient to subjects. In this paper we propose only two channel system to extract two hand 

gestures. 
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II. MATERIALS AND METHODOLOGY 

Proposed hand gestures system contains following five parts which is shown in figure.1. 

 

Figure 1. Methodology for EMG system 

 

Upper limb: Two right arm muscles are opted for signal acquisition. 

Signal acquisition: An AD T26 instrument is used for extracting two hand gestures. 

Preprocessing: Band pass filter is applied to remove unwanted noise from the acquired signals. 

Feature extractor: Value information about two hand gestures are extracted by Reference power technique. 

Classification: LVQ neural network is used for identify hand gestures. 

 

 Protocol 

The protocol for signal acquisition for two tasks is elaborate below: 
Hand Close (HC): The subjects were requested to flex all 

their fingers to form a fist. Skeletal muscle digitorum superficialis muscle is concerned during this task. 

Hand Open (HO): The subjects were requested to open the clenched fist. Extensor digitorum muscle is concerned during this 

task. 

 

(a)  (b) 

 

Figure2. Hand open and hand close Gestures 

 

 Muscles 

The two muscles of forearm - flexor digitorum superficialis and extensor digitorum are responsible for flexion and extension of two 

hand gestures [10]. 

 Signal Acquisition 

sEMG signals of the two hand movements were non inheritable employing a 2 channel AD Instrument bio- signal electronic 

equipment. 5 gold plated, cup formed electrodes were placed on top of digitorum superficialis muscle, skeletal muscle digitorum 

muscle of the correct forearm and ground conductor was placed on the bony surface. 10 subjects (7 Males, 3 Females) participated 

within the experiment. All subjects who participated within the experiments were university students and workers aged between 21 

to 40 years who voluntarily participated within the study. Participated subjects are divided into 2 teams supported gender are 

shown   in Table 1 and that they are divided 3 teams supported age are shown in Table 2 respectively. 

 
TABLE.1. GENDER BASED SUBJECTS GROUPING 

Gender Group Male Female 

Subjects S3, S5, S6, S7, S8, S9, S10 S1, S2, S4 

 

TABLE.2. AGE BASED SUBJECTS GROUPING 

Age Group 21-25 years 26-30 years 31-40 years 

Subjects S3, S4, S5, S6, S7, S9 S1, S2, S10 S8 
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Figure 3. Equipment setup during signal acquisition 

 

Consent was taken before the study. All subjects were healthy and free from health problem throughout the study period. 

Subjects were sitting during a comfy chair and requested to not create any visible movements throughout information acquisition 

which is shown in figure.3. 

 

Subjects were explained regarding the two hand movement tasks (hand open, hand close) and were executed by moving their 

hand as per the protocol. sEMG signals were sampled at 400 Hertz [11,12].Throughout signal acquisition a notch filter was applied 

to get rid of the 50 Hertz power cable artifacts. Acquired EMG signals are shown in figure 4 & 5. 
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Figure 4. Hand open gesture from right arm 
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Figure 5. Hand close gesture from right arm 
 

III. PREPROCESSING AND FEATUREEXTRACTION 

 Spectral Analysis 

The spectrum of the raw signals is studied using Short-Time Fourier Transform (STFT) to see the frequency elements for every 

movement. STFT algorithm is employed to see the sinusoidal frequency and phase content of a signal as it changes over slender 

time intervals (Marcelo Bigliassi et al., and Hema.C.R et   al.,   2014). From the spectral analysis, the frequency components 

for two tasks are inferred, the spectrum for two signals is shown in figure 6 for subject 10. From the figure6, it can be observed 

that dominant frequency range is from 0.1- 150 Hz for two hand movements of the subject 10. 
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Figure6. Spectrogram of Subject 10 for Two Different Finger Movements (a) Hand Close, (b) Hand Open. 

 

 Preprocessing 

Five frequency bands area unit extracted employing a Chebyshev bandpass filters by split the signal within the vary of forty 

Hertz to filter the noisy information. The five frequency ranges are (0.1-40) Hz, (40-80) Hz, (80- 120) Hz, (120-160) Hz, (160-

200) Hz. 

 

 Reference Power Technique 
The feature extraction method proposed was the reference power technique which states that the difference between reference 

signal X(t) and task signal E(x) is summed, squared and performed logarithmic transform to the band power data [13]. 

 

S =∑n−1[X(t) − E(x)] (1) 

 

R = 20 ∗ log(S2) (2) 
Where S is the sum of the difference between two signals and R is the power density of the signal. Sixteen features are extracted 

for each task per trial. The features are extracted for ten such trials for each task. 200 data samples for one subject are obtained. 

The feature sets obtained from the above feature extraction methods are individually applied to neural networks as input features to 

identify the signals into two hand movements. 

 

 Algorithm for Reference Power Technique 

The feature extraction algorithm mentioned above consists of following steps: 
Step 1: Collect sample data (S) of two channel sEMG signals for 5 seconds. 

Step 2: Notch filter is applied to remove the 50 Hz power line artifacts. 

Step 3: Band pass filters are applied to extract the five frequency bands from S. 

Step 4: Apply Reference Power to the frequency band signal to extract the power features using Equations1 & 2. 

Step 5: Repeat steps 1 to 4 for each trial for all tasks. 

Step 6: Ten features are extracted for each task per trial and repeat for ten such trials for two tasks. 

Step7: 200 data samples (20 x 10 trials = 20) for one subject is obtained to train and test the neural network. 

Step 8: Do steps 1 to 7 for ten subjects to collect a master dataset. 

IV. GESTURE IDENTIFICATION 

Exacted features are identified using LVQ. LVQ neural network consists of two nodes. The first node maps input vectors into 
clusters that are found by the network during training section. The second node merges groups of first layer clusters into the 

classes defined by the target data [14, 15, 16, 17, 19 & 20]. Proposed network is designed two input neurons and four output 

neurons toidentify the two hand gestures. LVQ designed model is shown in figure 7. 
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Figure 7. LVQ designed model 

 

V. BIT TRANSFER RATE 

The bit transfer rate for two hand gestures has been calculated from Equation.3. 

BTR = 

 
 

n= Number of Hand Gestures pa= Mean 

Accuracy 
1- pa= Mean Recognition Error 

Tact= Action Period (in seconds) [18]. 
 

  

  

 Network based results 

 

 

 

 

 

VI. RESULTS AND DISCUSSION 

 

The identification performance of the LVQ model using above mentioned features for the two hand movement tasks is shown in 

table 3. Table 3 comprises of mean testing time, training time, maximum, minimum, mean identification accuracy and standard 

deviation. From the tables, it was observed that the maximum mean identification accuracy of 93.08% for subject10 and minimum 

mean identification accuracy of 91.46% for subject7 were obtained. The mean training time and testing time for the network varied 

from 8.16 to 8.79 seconds and 0.50 to 0.93 seconds respectively. The standard deviation was 1.73 to 2.55. 

 

TABLE 3: IDENTIFICATION PERFORMANCE OF LVQ NEURAL NETWORK USING  

REFERENCE POWER FEATURE  EXTRACTION METHOD 

 

Subjects 

Mean Training Time 

(sec) 

Mean Testing Time 

(sec) 

Recognition Performance (%) 

SD MAX MIN MEAN 

1 8.25 0.51 2.53 97.50 88.33 92.71 

2 8.22 0.50 2.14 95.83 87.50 92.54 

3 8.16 0.53 2.55 96.67 87.50 92.25 

4 8.36 0.55 2.13 96.67 89.17 92.21 

5 8.77 0.52 2.53 95.83 86.67 92.13 

6 8.77 0.54 1.82 95.83 89.17 92.08 

7 8.73 0.54 2.28 94.17 85.83 91.46 

8 8.73 0.55 2.12 94.17 86.67 91.79 

9 8.73 0.52 1.94 95.83 88.33 92.37 

10 8.79 0.93 1.73 95.83 89.17 93.08 

 

 Identification Results for Subjects 

Subject based identification using LVQ is shown in table A. From figure8, it was seen that the data from subject 10 had 

obtained the highest mean accuracy of 93.08% and the least performance mean accuracy was observed for subject 7 with a range 

of 91.46%. 

(3) 
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Figure 8.Subject based identification rate using LVQ neural network 

 

 Identification Results for Gender 

The gender based identification results for LVQ are shown in table B. From figure 9, it is observed that the mean accuracy range 

for the female subjects with LVQ 94.49% and mean accuracy range for the male subjects with LVQ 92.17%. 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 9.Gender based identification rate using LVQ neural network 

 

 Identification Results for Age Group 

From the figure 10, mean accuracy range for the subjects in the age group 21-25 yrs with LVQ were 92.08%; age group 26-30 

yrs 92.78% and for age group 31-40 yrs 91.79%. 

 

 

 

 
 

 

 

 

 

 

Figure 10.Age groupbased identification rate using LVQ neural network 

 

 Identification Results Using Single Trail Analysis 

The performance of the two states HMI designed for each subject is verified through a single trial analysis using LVQ. From 

the figure 12, it was observed that for subject 10 the acceptance rate was high and for subject 7 the acceptance rate was low using 

reference power features. From the results, it is observed that the feasibility of designing two states HMI is possible for some 
subjects using LVQ. Single trial analysis using GUI for hand close and hand open movements shown in figure.11. 
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Figure 11. Single trial analysis result evaluation using GUI for hand close and hand open movements 

 

 

 

 

 

 

 

 

 

Figure12.Single trial analysis using LVQ neural network 
 

 Bit Transfer Rate Results 

From the bit transfer rate results it is evident that maximum bit transfer rate of 35.91 bits/sec for subject 10 and minimum bit 

transfer rate of 34.56 bits/sec for subject 7 achieved.Bit transfer rate results using LVQ neural network is shown in figure 13. 

 

 

 

 

 

 

 
 

 

 

 

 

Figure13.Bit transfer rate results using LVQ neural network 
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 Discussion 

From the Reference Power Technique feature extraction algorithmic program with LVQ neural network model employed in the 

study, the most classification accuracy of 93.08% was obtained. This justifies that the LVQ is best suited   to this study because 

the neural   network   model    is    specially    designed    for    pattern matching drawback. In projected methodology, most 
classification accuracy is obtained for subject 10 as results of his higher muscle fitness and his most involvement in work 

sessions. Subjects within the age group of 26-30 years are best suited to the study because of their higher muscle contractions. 

Higher muscle fatigue resistance has contributed for higher performance of feminine subjects as compared to male subjects. From 

the single trial analysis, it are typically discovered that the hand shut movement has achieved best recognition rate than hand open. 

Highest bit transfer rate of 35.91 bits/sec is achieved for subject 10. 

 

VII. CONCLUSION 

In this paper two states HMI were proposed for transradial amputation people. Hand open and hand close signals were extracted 

from ten subjects and processed using band pass filter. Reference power used for feature extraction and LVQ applied for 

identification of two hand movements. From the results, highest identification accuracy of 93.08% and maximum bit transfer rate 
of 35.91 bits/sec is achieved for subject 10. From the output it concludes that the proposed two states HMI system is useful for 

improving performance of hand prosthesis. 

 

APPENDIX A 

TABLE A: SUBJECT BASED IDENTIFICATION RATE OF LVQ NEURAL NETWORKUSING REFERENCE POWER 

FEATURE EXTRACTION METHOD 

 

Features 

Subjects 

Subject 10 (Mean Accuracy in %) Subject 7 (Mean Accuracy in %) 

LVQ 93.08 91.46 

 

 

TABLE B: GENDER BASED IDENTIFICATION RATE OF LVQ NEURAL NETWORKUSING REFERENCE 
POWERFEATURE EXTRACTION METHOD 

 

Features 

Gender Group 

Female 

(Mean Accuracy in %) 

Male (Mean 

Accuracy 

in %) 

LVQ 92.49 92.17 

 

TABLE C: AGE GROUP BASED CLASSIFICATION RATE OF LVQ USING POWER FEATURE EXTRACTION METHOD 

 
 

Features 

Age Group 

21-25 yrs 

(Mean 

Accuracy in 

%) 

26-30 yrs 

(Mean 

Accuracy in 

%) 

31-40 yrs 

(Mean 

Accuracy in 

%) 

LVQ 92.08 92.78 91.79 

 

TABLE D: SINGLE TRIAL ANALYSIS OF LVQ NEURAL NETWORK USING REFERENCE  

POWER FEATURE EXTRACTION METHOD 

Subjects HO Tasks HC 

  

S1 6 9 

S2 6 8 

S3 6 8 

S4 7 7 

S5 6 8 
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S6 6 8 

S7 5 8 

S8 6 9 

S9 7 7 

S10 8 7 

 

TABLE 8: BIT TRANSFER RATE OF LVQ NEURAL NETWORK USING REFERENCE POWER FEATURE EXTRACTION 

METHOD 

Subjects BTR (bits/sec) 

1 35.59 

2 35.45 

3 35.21 

4 35.18 

5 35.11 

6 35.07 

7 34.56 

8 35.07 

9 35.31 

10 35.91 
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