'THE GC MS PROFILES PLUMARIA PUDICA LEAF EXTRACTS'

Sharmila.D and Dr.L.Jeyanthi Rebecca Department of Biotechnology, BIHER,

ABSTRACT:

Plumaria pudica which is a garden plant belonging to family, Apocynaceae is also known as bridal bouquet and White Frangipani. This plant was collected from herbal garden at Chennai, Tamil Nadu India. The ethyl acetate and n-Hexane extracts of the leaves this plant was subjected to GC MS study following standard protocols. It was observed that some very Methyl 11,12-tetradecadienoate, important molecules such as Methyl N-(Nbenzyloxycarbonyl-beta-l-, aspartyl)-beta-d- glucosaminide, 9-Octadecenoic acid, (2phenyl-1,3-dioxolan-4-yl)methyl ester, trans-, trans-3,4,5-Trimethoxy-.beta.-methyl-.beta.-nitrostyrene, 2,4,6-Trimethylmandelic acid, 1-Heptatriacotanol and p-Xylenolphthalein in ethyl acetate extract and Strychane, 1-acetyl-20.alpha.-hydroxy-16trans-3,4,5-Trimethoxy-.beta.-methyl-.beta.-nitrostyrene, methylene-. Ethyl isoallocholate, 7-Methyl-Z-tetradecen-1-ol acetate, 1-Heptatriacotanol and p-Xylenolphthalein in n-Hexane extract. These molecules have far reaching medicinal roles which correspond to the reports of its medicinal values of *Plumaria pudica*.

Key words:

GC MS, *Plumaria pudica*, Methyl 11, 12-tetradecadienoate, 1-Heptatriacotanol, Ethyl iso-allocholate, p-Xylenolphthalein

INTRODUCTION:

Plants are rich resources of medicines and most of the modern medicines own their origin from plant. Ethnobotanically, all over the world, plants are the chief sources of medicines even today, which are mostly used by folklore, traditional, complementary and alternative forms of medicines. Although the history of use of plants as medicine is as old as mankind itself, their scientific role and mechanism of action are being probed only recently. The world health organization (WHO) has clearly defined traditional medicines in its report (WHO,2013).¹ The present study deals with the GC MS analysis of ethyl acetate (polar) and n-hexane extracts of the leaves of one medicinal plant, Plumaria pudica. Ethnobotanically this plant has been used as used as Antiinflammatory, nociceptive, anti-helminthic, anti-diarrheal activities and neurodegenerative disorders. In north eastern Brazil the plant has utilized as a folk medicine due to analgesic properties of it (Raoet al, 2020).²Plumaria pudica was also effective in various in vivo and in vitro pharmacological activities algicidal, antibacterial and cytotoxic activities (Chowdhary et al., 2014).³ Plumeria oil is warmed asnd used for a veriety of nerve related ailments.(Radhika et al., 2019).⁴ Oliveiraa et al, 2019 have reported the antiinflammatory and antioxidant role of the latex of *Plumaria pudica*.⁵ Chanaka et al, 2016, have reported the methanolic extracts of *Plumeria pudica* inhibit the production of Acetyl choline esterase in Zebra fish brain (Chanaka etal., 2016).⁶ The anti-inflammatory and nociceptive roles of lactifer proteins from Plumaria pudica was reported by Fernandesa et al, 2015.7

MATERIALS AND METHODS

The plant *Plumaria pudica*was collected from herbal garden at Chennai, Tamil Nadu. The plant was identified by a qualified botanist at Chennai. The ethyl acetate extract and n-Hexane extracts of the shade dried leaves of *Plumaraia pudica* were collected after 48 h of soaking. The extracts were evaporated and the dried powder was subjected to GC-MS analysis by standard procedures. The compounds are identified by GC-MS Library (NIST and WILEY).

RESULTS

The results of the GC-MS analysis of the ethyl acetate and n-hexane extracts of the leaves of *Plumaria pudica*are tabulated in Table 1 and 2 along with the possible medicinal role of each

molecule as shown in the profiles are tabulated in Table 1. Figure 1 and 2 represent the GC MS profiles of ethyl acetate and n-hexane extracts of *Plumaria pudica*. The identification of metabolites done as per mass spectra of the NIST spectral library(version 1.10 beta, Shimadzu) and possible medicinal roles of each bio molecule as per Dr. Duke's Phytochemical and ethnobotanical data base (National Agriculture Library, USA) and others as shown in Table 1 and 2.⁸

Qualitative Compound Report

Table 1. Shows the types of compounds present in the polar extract of *Plumaria pudica* leaves with retention time, molecular mass, Molecular formula, percept peak values and possible medicinal roles of each compound as shown in the GC MS profile.

Rete	Name of Molecule	Mo	Mol.	%	Possible Medicinal Role
ntion		1.	Formula	Peak	
Tim		Ma		area	
e		SS			

7.37	Methyl 11,12-tetradecadienoate	238	C15H26	4.428	Catechol o methyl Transferase
		.2	O2	81356	inhibitor, methyl donar, methyl
					guanidine inhibitor,
8.33	Methyl N-(N-	442	C19H26	2.515	Anaphylactic, Anti-tumor, Aryl
	benzyloxycarbonyl-beta-l-	.2	N2O10	15403	amine N acetyl transferase
	aspartyl)-beta-d- glucosaminide				inhibitor, decreases nor
					epinephrine production, down
					regulates uptake of nuclear and
					cytosol androgen, GABA-nergic,
					Increases Natural Killer cell
					activity, Inhibits tumor necrosis
					factor, myo-neuron stimulator
14.0	9-Octadecenoic acid, (2-	444	C19H26	2.904	Catechol-O-Methyl-Transfearse
9	phenyl-1,3-dioxolan-4-	.3	N2O10	88422	inhibitor, Increases Glutathione-s-
	yl)methyl ester, trans-				Transferase Activity, Decrease
					Glutamate Oxaloacetate
					transaminase activity, Decreases
					Glutamate pyruvate transaminase,
					Glycosyl transferase inhibitor,
					Glutathione-S-Transfearse
					inhibitor, Increases glyoxalate
					transamination, Reverse
					transcriptase inhibitor, Anti 5-HT,
					Anti HIV integrase, Aryl
					hydrocarbon hydroxylase
					inhibitor, HIF 1 alpha inhibitor,
					increases tyrosine hydroxylase
					activity, Suppress HMG Co-A
					reductase activity, Tyrosine
					hydroxylase activator, 11Beta
					HSD inhibitor.
16.8	trans-3,4,5-Trimethoxybeta	253	C12H15	9.426	17 beta hydroxysteroid

2	methylbetanitrostyrene	.1	NO5	15653	dehydrogenase inhibitor,
					Antiamyloid beta, Anti TGF beta,
					Beta receptor agonist,
17.0	5,6,7,8,9,10-Hexahydro-9-	253	C14H23	3.289	Not known
4	methyl-spiro[2H-1,3-	.2	NOS	09684	
	benzoxazine-4,1'-				
	cyclohexane]-2-thione				
17.9	Phen-1,4-diol, 2,3-dimethyl-5-	206	C9H9F3	6.291	Not known
1	trifluoromethyl-	.1	O2	54299	
19.5	2,4,6-Trimethylmandelic acid	194	C11H14	6.445	Acidifier, Acidulant, Arachidonic
1		.1	O3	85962	acid inhibitor, increases aromatic
					amino acid decarboxylase activity,
					inhibit production of uric acid.
21.3	[1-(3,3-Dimethyloxiran-2-	294	C18H34	4.740	Not known
1	ylmethyl)-3,7-dimethylocta-2,6-	.2	OSi	44683	
	dienyl]trimethylsilane				
	Cyclopropanebutanoic acid, 2-				Not known
22.3	[[2-[[2-[(2-	374	C25H42	9.933	
4	pentylcyclopropyl)methyl]cyclo	.3	O2	45753	
	propyl]methyl]cyclopropyl]meth				
	yl]-, methyl ester				
23.2	1-Heptatriacotanol	536	C37H76	3.002	Antibacterial, anticancer,
1		.6	0	85844	antiprotozoal, chemopreventive,
					anti-inflammatory, antimalarial,
					anti-flu, antiviral, enzyme
					inhibitor, anti-
					hypercholesterolemic
	1H-2,8a-				Not known
	Methanocyclopenta[a]cyclopro				
23.4	pa[e]cyclodecen-11-one,	364	C20H28	3.649	
2	1a,2,5,5a,6,9,10,10a-octahydro-	.2	O6	52862	
	5,5a,6-trihydroxy-1,4-				

	bis(hydroxymethyl)-1,7,9-				
	trimethyl-, [1S-				
	(1.alpha.,1a.alpha.,2.alpha.,5.be				
	ta.,5a.beta.,6.beta.,8a.alpha.,9.a				
	l pha.,10a.alpha.)]-				
23.9	Fenretinide	391	C37H76	3.451	Not known
6		.3	0	51877	
25.0	Dasycarpidan-1-methanol,	326	C20H26	6.678	Not known
7	acetate (ester)	.2	N2O2	45737	
	1H-2,8a-				Not known
	Methanocyclopenta[a]cyclopro				
26.5	pa[e]cyclodecen-11-one,	364	C20H28	2.582	
2	1a,2,5,5a,6,9,10,10a-octahydro-	.2	O6	46141	
	5,5a,6-trihydroxy-1,4-				
	bis(hydroxymethyl)-1,7,9-				
	trimethyl-, [1S-				
	(1.alpha.,1a.alpha.,2.alpha.,5.be				
	ta.,5a.beta.,6.beta.,8a.alpha.,9.a				
	l pha.,10a.alpha.)]-				
	D-Homo-24-nor-17-				Not known
28.9	oxachola-1,20,22-triene-	438	C26H30	3.130	
7	3,7,16-dione, 14,15:21,23-	.2	O6	92054	
	diepoxy-4,4,8-trimethyl-,				
	(5.alpha.,13.alpha.,14.beta.,				
	15.beta.,17a.alpha.)-				
31.7	Flurandrenolide	436	C24H33	2.528	Not known
4		.2	FO6	18042	
	4H-				Not known
	Cyclopropa[5',6']benz[1',2':7,8]a				
31.9	zuleno[5,6-b]oxiren-4-one, 8-	422	C22H30	2.379	
1	(acetyloxy)-	.2	08	78487	
	1,1a,1b,1c,2a,3,3a,6a,6b,7,8,8a-				

	dodecahydro- 3a,6b,8a-					
	trihydroxy-2a-					
	(hydroxymethyl)-1,1,5,7-					
	tetramethyl-,					
	(1a.alpha.,1b.beta.,1c.beta.,2a.b					
	eta.,3a.beta.,6a.alpha.,6b.alpha.					
	, 7.alpha.,8.beta.,8a.alpha.)-					
32.3	p-Xylenolphthalein	374	C24H22	2.994	Adrenalin-pressor,	Algogenic,
2		.2	O4	31453	ANS Paralytic,	Anti-cAMP-
					Phosphodiesterase,	Anticancer,
					Anticarcinomic,	antidote,
					Antimitral valve prola	pse

Qualitative Compound Report

Figure 2. GC MS profile of n-Hexane extracts of the leaves of Plumaria pudica

Table 2. Shows the types of compounds present in the Non-polar extract of *Plumaria pudica* leaves with retention time, molecular mass, Molecular formula, percept peak values and

possible medicinal roles of each compound as shown in the GC MS profile.

Retenti	Name of the	Mole,	Mol.	%	Possible medicinal roles
on time	Molecule	mass	formula	Peak	
				Area	
3.72	Strychane, 1-	338.2	C21H26	36.29	5, alpha-reductase inhibitor,
	acetyl-20.alpha		N2O2	88331	alpha-amylase inhibitor, alpha-
	hydroxy-16-				glucosidase inhibitor, alpha-
	methylene-				reductase inhibitor, HIF 1 alpha
					inhibitor, increase alpha-N-
					mannosidase activity, interleukin-
					1 alpha inhibitor, testosterone 5-
					alpha reductase inhibitor TNF-
					alpha inhibitor, IKappa B alpha
					phosphorylation inhibitor, 17 beta
					hydroxysteroid dehydrogenase
					inhibitor, anti amyloid beta, Anti
					TGF beta, Beta blocker, Acetyl
					choline inhibitor
11.94	Oleic Acid	282.3	C18H34	2.831	Acidifier, Acidulant, Arachidonic
			O2	17669	acid inhibitor, increases aromatic
					amino acid decarboxylase activity,
					inhibit production of uric acid.
16.51	trans-3,4,5-	253.1	C12H15	6.942	17 beta hydroxysteroid
	Trimethoxybeta		NO5	59444	dehydrogenase inhibitor,
	methylbeta				Antiamyloid beta, Anto TGF beta,
	nitrostyrene				Beta receptor agonist, Beta
					adrenergic receptor blocker, beta
					blocker, beta galactosidase
					inhibitor, beta glucuronidase
					inhibitor, ER beta binder
17.05	5,6,7,8,9,10-	253.2	C14H23	2.686	Not known
	Hexahydro-9-		NOS	5312	

	methyl-spiro[2H-				
	1,3-benzoxazine-				
	4,1'-cyclohexane]-				
	2-thione				
17.16	Ethyl iso-	436.3	C26H44	1.819	Anti-coagluant, antidyspeptic,
	allocholate		O5	20837	anti-inflammatory, mucolyte,
					proteolytic
21.05	7-Methyl-Z-	268.2	C17H32	2.063	Increases Zinc bioavailability,
	tetradecen-1-ol		O2	5513	oligosaccharide provider,
	acetate				Catechol-O-methyl transferase
					inhibitor, Methyl donor, Methyl
					guanidine inhibitor
22.34	Methyl 9-2	256.2	C16H32	9.909	Catechol-O-methyltransferase
	methyltetradecano		02	89661	inhibitor, methyl donor, methyl
	ate				guanidine inhibitor,
23.21	Phen-1,4-diol, 2,3-2	206.1	C9H9F3	1.939	Not known
	dimethyl-5-		O2	84355	
	trifluoromethyl-				
23.42	1-Heptatriacotanol	536.6	C37H76	2.677	Antibacterial, anticancer,
			0	05857	antiprotozoal, chemopreventive,
					anti-inflammatory, antimalarial,
					anti-flu, antiviral, enzyme
					inhibitor, anti-
					hypercholesterolemic
23.97	9,10-Secocholesta-	488.4	C30H52	2.727	Not kbown
	5,7,10(19)-triene-		O3Si	77606	
	1,3-diol, 25-				
	[(trimethylsilyl)ox				
	y]-,				
	(3.beta.,5Z,7E)-				
	Cyclopro				Not kbnown
25.07	panebuta	374.3	C25H42	8.807	

	noic acid,		O2	70348	
	2-[[2-[[2-				
	[(2-				
	pentylcycl				
	opropyl)				
	methyl]cy				
	clopropyl]				
	methyl]cy				
	clopropyl]				
	methyl]-,				
	methyl				
	ester				
	D-Homo-24-nor-				Not known
28.98	17-oxachola-	438.2	C26H30	3.347	
	1,20,22-triene-		O6	65655	
	3,7,16-dione,				
	14,15:21,23-				
	diepoxy-4,4,8-				
	trimethyl-,				
	(5.alpha.,13.alpha				
	.,14.beta.,15.beta.				
	,17a.alpha.)-				
31.05	Flurandrenolide	436.2	C24H33	1.953	Not known
			FO6	11999	
	1H-2,8a-				Not known
	Methanocyclopen				
31.74	ta[a]cyclopropa[e]	364.2	C20H28	5.121	
	cyclodecen-11-		O6	84979	
	one,				
	1a,2,5,5a,6,9,10,1				
	0a-octahydro-				
	5,5a,6-trihydroxy-				
	1,4-				

	bis(hydroxymethy					
	l)-1,7,9-trimethyl-					
	, [1S-					
	(1.alpha.,1a.alpha.					
	,2.alpha.,5.beta.,5					
	a.beta.,6.beta.,8a.a					
	lpha.,9.alpha.,10a.					
	alpha.)]-					
	2,4,6-Decatrienoic				Not known	
	acid,					
33.07	1a,2,5,5a,6,9,10,10	496.3	C30H40	8.489		
	a-octahydro-5,5a-		O6	02184		
	dihydroxy-4-					
	(hydroxymethyl)-					
	1,1,7,9-					
	tetramethyl-11-					
	oxo-1H-2,8a-					
	methanocyclopent					
	a[a]cyclopropa[e]c					
	yclodecen-6-yl					
	ester, [1aR-					
	(1a.alpha.,2.alpha.,					
	5.beta.,5a.beta.,6.b					
	eta.,8a.alpha.,9.alp					
	ha.,10a.alpha.)]-					
36.90	p-	374.2	C24H22	2.384	Adrenalin-pressor,	Algogenic,
	Xylenolphthalein		O4	17845	ANS Paralytic,	Anti-cAMP-
					Phosphodiesterase,	Anticancer,
					Anticarcinomic,	antidote,
					Antimitral valve prol	apse

DISCUSSION

From the GC MS profiles of both polar (ethyl acetate) and non-polar (n-Hexane) extracts of the leaves of *Plumaria pudica* is clear that some very important biomolecules are present therein with important medicinal roles. The presence of some biomolecules such asMethyl 11,12-tetradecadienoate, Methyl N-(N-benzyloxycarbonyl-beta-l-, aspartyl)-beta-dglucosaminide, 9-Octadecenoic acid, (2-phenyl-1,3-dioxolan-4-yl)methyl ester, trans-, trans-3,4,5-Trimethoxy-.beta.-methyl-.beta.-nitrostyrene, 2,4,6-Trimethylmandelic acid, 1-Heptatriacotanol and p-Xylenolphthalein in the polar extract and the presence of molecules such as Strychane, 1-acetyl-20.alpha.-hydroxy-16-methylene-, trans-3,4,5-Trimethoxy-.beta.-methyl-.beta.-nitrostyrene, Ethyl iso-allocholate, 7-Methyl-Ztetradecen-1-ol acetate, 1-Heptatriacotanol and p-Xylenolphthalein in non-polar extract clearly demonstrate that *Plumaria pudica* does have many far reaching medicinal roles which correspond well with its use as ethnobotanical medicine as Anti-inflammatory, nociceptive, anti-helminthic, anti-diarrheal activities and neurodegenerative disorders is well supported.

CONCLUSION

It could be summarized from the results and discussion that *Plumaria pudica* is a very important herb.

ACKNOWLEDGEMENTS

The authors thankfully acknowledge the support of all the people and organizations who helped directly or indirectly in this study.

REFERENCES

1. WHO.FactsheetonTraditionalmedicine.WorldHealth Organization, 2013,134.

2. Rao SC., Ashish Suttee, Prasenjit Mondal.AN EYE-CATCHING AND COMPREHENSIVE REVIEW ON *PLUMERIA PUDICA* JACQ. (BRIDAL BOUQUET). Plant Archives, Vol. 20, Supplement 2, 2020 pp. 2076-2079

3. Choudhary M, Kumar V. Phytochemical and Pharmacological activity of Genus *Plumeria*: An updated review, Int J of Biomedical and Advance Res, 2014; 5(6): DOI: <u>10.7439/ijbar.v5i6.761</u>

4. Radhika, B. (2019). Anti-Helminthic Activity of *Plumeria pudica* Leaves. Journal of. Chemistry. And Pharmaceutical. Research, 11(2): 6-12.

5. Oliveiraa, N.V.M.; Souzaa, B.S.; Moitaa, M.A.; Oliveiraa, L.E.S. and Britoa, F.C. (2019). Proteins from *Plumeria pudica* latex exhibit protective effect in acetic acid induced colitis in mice by inhibition of pro-inflammatory mechanisms and oxidative stress. Life Sciences. 231(15): 116535.

6. Chanaka, P.W.W.; Viraj, M.P.M.; Philip, M.; Rani, J.S. and Guru, P.R. (2016). Extraction of acetylcholine esterase inhibitors from plumeria pudica and analyzing its activity on zebrafish brain. World Journal of Pharmacy and Pharmaceutical Sciences, 5(4): 1781-91.

7. Fernandesa, H.B.; Machadoa, D.L.; Diasb, J.M.; Britob, T.V. and Jalles, A.B. (2015). Laticifer proteins from Plumeria pudica inhibit the inflammatory and nociceptive responses by decreasing the action of inflammatory mediators and pro-inflammatory cytokines. Revista Brasileira de Farmacognosia, 25(3): 269-2.

8. Dr. Duke's Phytochemical and Ehnobotanical Databases. U.S. Department of Agriculture, Agricultural Research Service. 1992-2016. Dr. Duke's Phytochemical and Ethnobotanical Databases. Home Page, http://phytochem.nal.usda.gov/ http://dx.doi.org/10.15482/USDA.ADC/1239279