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Abstract: 

Deep Learning, a part of Artificial Intelligence, uses deep neural networks. These networks need 

a lot of resources and efficient design to work well. They also require high memory and parallel 

processing. Building these networks is tough because they need large components like MAC 

units and activation functions. Edge-AI applications need high-speed accelerators, which use 

more space and power. To make a good DNN accelerator without losing much speed, we need to 

improve MAC design, activation functions, and network complexity. ASIC-based hardware 

designs for DNNs have limited space and flexibility. This study looks at creating low-power and 

efficient DNN accelerators using the CORDIC architecture for MAC and activation functions. 

CORDIC designs are efficient but slow. To fix this, we suggest a pipelined architecture for 

CORDIC-based MAC and activation functions. Pipelining uses more resources, so we study the 

balance between stages and accuracy to get high speed. We offer different designs for CORDIC-

based MAC and activation functions with iterative and pipelined approaches. he proposed 

design’s system parameters and hardware can be adjusted for specific applications. Iterative 

architecture is good for AI-enabled IoT applications with minimal speed loss. Pipeline 

architecture is better for Edge-AI, offering high speed but using more space and power. We 

developed a digital solution to design and implement a deep neural network for ASIC and FPGA 

platforms. DNNs work well with both digital and analog inputs. An ADC is needed to convert 

analog input to digital for processing. This study also focuses on designing a low-power, high-

speed 4-bit Flash ADC to handle both analog and digital inputs. The ADC works effectively at a 

sampling rate of 2.4 GS/s and is used in analog-digital interface accelerators. Overall, the 

proposed designs use fewer hardware resources and less power, which is important for edge 

computing solutions. 

Keywords: Multiply-and-Accumulate, activation function, Co-ordinate Rotation Digital 

Computer,  
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I. Introduction 

 

In recent years, artificial intelligence (AI) has become extremely popular. AI and machine 

learning (ML) have transformed modern society. Over the past decade, there have been 

significant advancements in this field [1]. Innovations like self-driving cars, digital assistants, 

manufacturing robots, and smart cities show that creating intelligent machines is possible. AI has 

already changed many industries, such as retail, manufacturing, banking, healthcare, and 

journalism, and it continues to grow into new areas. 

Machine learning, a part of AI, allows computers to learn new skills and knowledge without 

being explicitly programmed. It is essential for creating autonomous programs that can gather 

data and learn [2]. Like the human brain, machine learning uses inputs like knowledge graphs or 

training data to understand domains, entities, and their relationships. Once these entities are 

identified, deep learning can begin. 

Deep learning is a type of machine learning inspired by how the human brain works. It uses large 

datasets to improve its algorithms. Like humans learning from experience, deep learning 

algorithms repeat tasks and make small adjustments each time to get better results. 

Deep learning involves neural networks with many layers, called deep neural networks (DNNs). 

These networks are the backbone of many modern AI applications. According to computer 

scientist John McCarthy [3], the goal of DNNs is to create smart machines that can achieve 

human-like goals. DNNs perform well because they can extract important features from raw data 

after being trained on large amounts of information. 

DNNs are used in various tasks like lane detection, pattern recognition, fault detection, and 

industry monitoring [4]. However, these tasks often need real-time processing, which requires a 

lot of computing power. To speed up DNN computations, platforms like GPUs, CPUs, ASICs, 

and FPGAs are used. CPUs and GPUs support processes like Multiply-Accumulate (MAC), but 

they consume a lot of power because they don’t use their resources efficiently. In contrast, ASICs 

and FPGAs perform fast multiplication with less resource use and lower power consumption. 

Different activation functions are useful in different situations. However, traditional architectures 

can’t easily adjust the use of multiple activation functions on a chip. This chapter looks at how to 

optimize and design activation functions (AF) for deep neural networks (DNNs) [5]. One big 

challenge is making these functions flexible while keeping the chip size small, especially when 

using ASICs (Application-Specific Integrated Circuits). 

To make the most of an ASIC’s parallel processing power, we need a space-efficient, 

customizable architecture for AFs. Our proposed solution is the Coordinate Rotation Digital 
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Computer (CORDIC) method, which uses a shift-and-add technique. This adaptable AF design 

includes both tan hyperbolic and sigmoid functions. 

Deep neural networks (DNNs) [6] are commonly used for tasks like pattern recognition, 

prediction, and classification. Key parts of a DNN include the computational unit, activation 

function (AF), mathematical precision, data formats, and design platform. There are three main 

types of hardware for DNNs: application-specific integrated circuits (ASICs), digital signal 

processors (DSPs), and field-programmable gate arrays (FPGAs). ASICs offer the best 

performance and space efficiency, but they can’t be easily changed for different uses and require 

a lot of resources for large networks. 

To achieve high accuracy with multiple activation functions, power-efficient designs are needed 

to lower the supply voltage. Hardware implementations of DNNs can use the network’s 

parallelism to improve performance. Efficient VLSI designs have been developed for various 

DNN applications [7]. However, the accuracy and performance of a neural network depend 

heavily on data precision, which can increase power and space requirements when implemented 

in hardware. Flexible architectures are needed to balance this trade-off. FPGAs take up more 

space than ASICs but offer more customizable designs. Neural networks need adjustable 

activation functions like sigmoid, hyperbolic tangent (tanh), and exponential non-linear 

transformations. 

Figure 1 shows the typical design of a neuron with several activation functions, as suggested. 

Among its many significant downsides are the following: higher data propagation time (because 

of MUX), power dissipation (static power dissipation) because of the unused hardware, and area 

overhead (path-A, path-B, and path-C) to separate activation functions. Since only one activation 

function can be enabled at a time, the separate hardware for each activation function is not the 

ideal option. To tackle this trade-off, we offer an optimized CORDIC-based architecture that 

allows neural networks to perform efficient yet adjustable computations. 

 

Figure 1: Typical design architecture of single neuron with configurable activation function 
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II. Literature Survey 

 

Classical philosophy saw human thinking as the mechanical handling of symbols. For a long 

time, people have tried to create artificial beings with human-like intelligence, which was the 

start of artificial intelligence (AI). In 1950 [8-9], Alan Turing discussed the idea of making an 

intelligent machine and introduced the ‘imitation game,’ now known as the ‘Turing test.’ The 

Dartmouth summer research project on AI in 1956 is considered the official start of AI as a 

research field [10-11]. Over the years, AI has had its ups and downs. Recently, with the 

availability of big data and faster computers, AI has gained a lot of attention and investment. 

Machine learning (ML) methods have been successfully used to solve many problems in both 

academia and industry. 

Machine learning (ML) algorithms, including those inspired by biology, originally aimed to 

mimic how the human brain works. The human brain is seen as the most intelligent ‘machine’ 

with very complex and efficient operations. In ML algorithms, two main units are synapses and 

neurons, similar to the biological nervous system. Synapses handle information processing, while 

neurons handle feature extraction. There are various neuron models like McCulloch–Pitts, 

sigmoid, ReLU, and Integrate-and-Fire, all of which have nonlinear characteristics needed for 

feature extraction and training neural networks (NNs) [12]. Later, ‘biologically inspired’ models 

were created as mathematical methods to achieve advanced functions. Modern ML algorithms 

are generally divided into two types: artificial neural networks (ANNs), which use numerical 

values, and spiking neural networks (SNNs), which use spikes to represent data. 

The rapid increase in data for AI applications has made the need for specialized computing 

platforms more urgent. These platforms, designed specifically for AI, range from complements to 

traditional von Neumann platforms to essential, stand-alone solutions. Known as ‘domain-

specific computing,’ these platforms are customized for AI tasks. They have achieved significant 

improvements in power and performance efficiency by overcoming challenges like the ‘memory 

wall’ and ‘power wall.’ Recent AI-specific computing systems, or AI accelerators, are built with 

many highly parallel computing and storage units [13]. These units are arranged in a two-

dimensional (2D) layout to support common matrix-vector multiplications in neural networks. 

In addition to traditional CMOS designs, new types of non-volatile memories like ReRAM are 

being used in AI accelerators. These new memories can store a lot of data and access it quickly, 

and they can also perform calculations directly within the memory. ReRAM arrays can store 

neural networks and perform matrix-vector multiplications in an analog way. Compared to the 

latest CMOS designs, ReRAM-based AI accelerators are much more efficient, using 3-4 times 

less power [14]. Although analog operations can be noisy, machine learning algorithms can 

handle this noise well. However, converting between analog and digital signals in these 

accelerators requires DACs and ADCs, which use a lot of power and space. 
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III. Proposed System 

Using deep neural networks (DNN) for real-world problems requires a lot of hardware, high 

computational power, and more memory bandwidth. AI-enabled IoT applications need DNN 

engines that use resources efficiently. The hardware needed for DNNs increases with the depth of 

the neural network. In this chapter, we propose a design for a DNN engine that improves 

performance and uses resources efficiently. The design uses a layer-multiplexed DNN accelerator 

at the system level. Although reusing a single layer in the DNN can limit throughput, this issue is 

addressed by using a pipelined MAC design. 

Types of Activation Functions and Design Techniques 

Activation functions (AF) in deep neural networks (DNN) transform the output of the MAC 

(multiply-accumulate) operation. Because AFs are non-linear, they need more hardware 

resources, and resource usage increases a lot with higher precision. Implementing piecewise 

linear (PWL) AFs also requires extra memory, especially for 16-bit or higher precision. As 

precision increases, the memory needed grows a lot, making hardware usage very expensive. 

DNN applications use many types of non-linear transformations. 

There are many types of activation functions, such as linear, sigmoid, tanh, rectified linear units 

(ReLU), parameterized ReLU, exponential, swish, and softmax. For back-propagation to work, 

activation functions need to be differentiable to calculate gradients. The best activation functions 

are differentiable, non-linear, and easy to use. You can choose between linear and non-linear 

activation functions, but non-linear ones are usually better. Common non-linear activation 

functions include Sigmoid, Tanh, ReLU, and Exponential. Depending on the application, other 

non-linear functions like Leaky ReLU, SeLU, and Softplus are also used. This chapter discusses 

several non-linear activation functions, including sigmoid, tanh, and ReLU. We have designed a 

flexible architecture using the CORDIC algorithm that can activate sigmoid, tanh, and ReLU 

with the same hardware. 

 

Figure 2: ReLU Activation 
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Exploring Hardware Implementation of Activation Functions 

This section explains popular activation functions (AFs) like sigmoid, Tanh, and ReLU. While 

they are based on the same idea, each one uses different math processes. 

For storing AF parameters locally, you can use different on-chip memory types like Lookup 

Tables (LUTs), Block RAM (BRAM), Distributed FPGA memory, or external DRAM. Here are 

some ways to implement them: 

1. Using LUTs to store the function. 

2. Using LUTs to store parameters. 

3. Approximating calculations using base-2. 

4. Using the Coordinate Rotation Digital Computer (CORDIC) algorithm. 

5. Combinational logic-based implementation of the non-linear and continuous character of 

the AF makes a correct computation utilizing hardware implementation problematic. 

Improving Activation Function Performance with Pipelining 

The CORDIC algorithm’s hyperbolic rotation mode is used in hardware designs for adjustable 

activation functions. These systems use less power and space than traditional memory-based 

devices but have lower throughput. To address this, we present an improved CORDIC-based 

hardware solution for high-throughput neural network applications with adjustable non-linear 

activation functions. Here are the main points: 

 We analyze the trade-off between accuracy and the two CORDIC phases using Pareto 

analysis. 

 For non-linear activation functions, we determine the optimal number of pipeline stages 

in a CORDIC-based architecture, considering space and power needs. Our research 

shows that a four-stage pipeline can increase throughput without losing accuracy. 

 We examine the effects of computational approximation, which reduces the number of 

pipeline stages, by extracting error cost functions for the AF model. 

 Using CMOS 45nm technology, we compare our design to state-of-the-art designs, 

discussing the circuit’s physical properties like area, power, and critical delay for the 

derived Pareto points. 

Efficient and Configurable Neuron Design Using CORDIC Architecture 

As computational complexity increases in hardware implementations of artificial neural 

networks (ANNs), both area and performance can suffer. Fixed ASIC designs require extra effort 

to configure features like bit precision flexibility or different activation functions (e.g., sigmoid, 



International Journal of Early Childhood Special Education (INT-JECSE) 
DOI:10.48047/intjecse/v16i3.30 ISSN: 1308-5581 Vol 16, Issue 03 2024 

301 
 

tanh). High-bit precision calculations (32-bit or 64-bit) also consume more power and space. 

Therefore, quicker response times and simpler technology (bit accuracy) are highly desired. 

The classic ASIC-based neuron design includes several activation functions and a multiply-

accumulate (MAC) unit. A MAC unit consists of a multi-adder tree and multiple multipliers. The 

activation function that processes the MAC unit’s output is selected by a multiplexer based on 

the application. 

Improving MAC Unit Performance with Pipelining 

A major challenge in using modern Deep Neural Networks (DNNs) is the resource-heavy 

Multiply-Accumulate (MAC) unit. To make DNN accelerators work better, we need to improve 

computation efficiency and throughput. This project aims to design a MAC unit using the 

CORDIC architecture. Although CORDIC-based devices are efficient in size and power, they 

have low throughput. Our pipelined architecture for the MAC unit addresses this issue. We use 

Pareto analysis to examine accuracy variations at different precision levels and identify the 

critical pipeline steps for optimal performance. 

Introduction to MAC and Performance-Enhancing Techniques 

For high bit-precision calculations, the Multiply-Accumulate (MAC) block in Deep Neural 

Networks (DNNs) becomes very demanding due to its power-hungry multiplication. Researchers 

have proposed ways to customize ASIC and FPGA architectures, but these often compromise 

performance, throughput, and accuracy. Bandwidth constraints also pose challenges when 

implementing hardware accelerators. 

Studies have examined performance metrics for hardware acceleration with various bit 

precisions (8, 16, 24, or 32 bits). The shift-and-add multiplication method uses fewer hardware 

resources and reduces complexity. The CORDIC architecture is suggested for efficient MAC 

design, but it has lower throughput due to its iterative nature. To achieve n-bit accuracy, an n-bit 

barrel shifter and n-1 additions are needed. Vedic multipliers offer efficient low-precision MAC 

designs, but they become unscalable for high-precision systems due to increased critical path and 

propagation time. 

Resource-Saving Techniques for MAC Units 

Researchers have explored the modified Booth’s method for multiplication to save resources. 

They examined physical performance metrics after implementing a MAC design based on 

Wallace trees, which use efficient lower-precision AND and OR planes. However, as bit accuracy 

increases, the design complexity also rises. 

Using an approximation multiplier in MAC calculations helps reduce power consumption and 

circuit latency, which is beneficial for error-tolerant applications. One study introduced a roughly 

accurate partial product accumulation tree, and the multiplier’s error-prone logic compressors 

showed promising results for hardware implementation, enhancing power and energy efficiency. 
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Sharing weights simplifies MAC calculations and maintains consistent storage capacity. 

Research on a reversible logic structure high-performance array multiplier has shown improved 

throughput performance. However, current enhancement strategies do not cover multi-precision 

signed/unsigned computing. 

This study evaluates a high-performance CORDIC-based MAC unit for DNN accelerators, 

addressing the trade-offs between area, power, and throughput. 

Fixing Throughput Issues with CORDIC Phases 

To solve the throughput problem, we use CORDIC phases and assess the necessary pipeline 

steps, which add some area overhead. Since accuracy and the number of pipeline stages are often 

at odds, we examined different stages of the CORDIC-based architecture to understand this 

trade-off. We also tested performance accuracy at various levels of mathematical precision. 

Although there’s a slight loss in accuracy, 8-bit precision computing is much faster than 16-bit 

precision and uses four times less memory bandwidth. Additionally, we reduced space usage 

without sacrificing throughput or accuracy, thanks to the Pareto analysis that evaluated the 

necessary number of phases. 

Using a 45 nm technology node, the next section synthesizes the proposed design and describes 

the circuit’s physical properties, including area, power, and critical delay. 

Layer-Multiplexed High-Performance DNN Accelerator 

Applying deep neural networks (DNN) to real-world problems requires a lot of memory 

bandwidth, processing power, and other hardware resources. Efficient DNN engines are essential 

for AI-powered Internet of Things applications. As the neural network gets deeper, more 

hardware resources are needed. 

Our work proposes a new DNN engine architecture that is more cost-effective and performs 

better. We developed and deployed a layer-multiplexed DNN accelerator at the system level. By 

implementing the suggested pipelined MAC design, we overcome the throughput limits that 

occur when reusing a single layer within the DNN. 

IV. Results and Discussion 

Strength of the Proposed Work 

While much work has been done to improve the accuracy of deep neural networks, there has 

been little effort to design equivalent VLSI architecture for a chip or system solution. Our 

proposed work aims to create a single chip/system solution that amputated patients can use to 

perform daily activities easily, making them more self-dependent. 

This section discusses the hardware performance and implementation results for a complete 

layer-reused system architecture and an enhanced CORDIC engine-based MAC unit. The 
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efficient layer-reused DNN configuration (196:64:32:32:10) with an enhanced MAC unit is 

designed using a hardware description language. The accuracy performance of the proposed 

design has been validated using Python with the standard TensorFlow computation for MNIST. 

Furthermore, we have simulated fixed-point behavior by quantizing all the operations and 

activation. Hence, our CORDIC-based Python implementation is framework-independent and 

faithfully replicates the hardware design to evaluate accuracy. The MNIST input image (28x28) 

is resized to 14x14, which increases our DNN performance, and the model has been trained for 

signed 8-bit precision fixed-point arithmetic, noting the inference accuracy. The extracted 

weights and biases are used to verify the hardware implementation. The Virtex-7 VC707 FPGA 

has targeted DNN implementation and evaluated results. The following experimental evaluation 

is performed for design validation and extracted results. 

To improve the performance of the MAC unit, we optimized the architecture by introducing 

pipelining. The number of pipeline stages directly affects resource utilization, so we analyzed 

this through experiments. We used a five-stage pipeline for performance evaluation. Based on 

observed Pareto points, we implemented the enhanced MAC design and compared the results 

with state-of-the-art designs. In our experiment, we first compared performance parameters for 

signed 8-bit precision with the best designs available, as shown in Table 1. This table reports 

resource utilization, circuit critical delay per clock, and Power-Delay-Product (PDP). We used 

signal and logic power for PDP calculation. It can be seen that our proposed design has a 2.2 

times lower PDP compared to  

 

(a) Analyzing the effect of the number of integer bits for different bit-precisions, at Max Norm = 

5.5 for the proposed enhanced MAC. 
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(b) Analyzing the accuracy versus the number of bits left of the decimal point for 8, 12, and 16 

bit-precision, with Max Norm = 5.5 for the proposed enhanced MAC. 

Figure 3:  Analyzing the accuracy versus the number of bits 

Secondly, we analyzed the impact of bit precision on hardware parameters. We compared our 

MAC implementation results with the multiply and accumulate IP from Xilinx, as shown in 

Table 2. We looked at different signed dynamic fixed-point representations using 6-, 9-, 13-, and 

17-bit, which correspond to 5-, 8-, 12-, and 16-bit precision, respectively. One extra bit is used as 

a signed bit in the actual computation, as discussed in Section 5.4. Since our MAC uses five 

pipeline stages, the minimum bit precision is five magnitude bits. We observed that the proposed 

design shows only slight increases in resource utilization for higher precision. The rate of 

increase in flip-flop (FF) utilization is almost the same for both MACs. However, because our 

MAC has a pipelined structure, it uses more FFs, but the difference increases more or less 

linearly. 

Table 1: compares resource utilization and performance parameters of the MAC with state-of-

the-art techniques at fixed <6,8> precision. 

Resources 

Utilization 

Slice LUTs Slice Registers Critical Path 

Delay (ns) 

Power-delay 

Product (pJ) 

Vedic 159 245 4.48 5.86 

IEEE 130 45 3.98 5.01 

Wallace 105 112 2.59 3.13 

Booth 83 61 3.08 2.77 

Shift-add 75 58 5.44 3.97 

Acc_App 62 59 2.87 2.04 

proposed 54 88 1.52 0.91 
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Table 2: compares resource utilization and performance parameters for the MAC architecture at 

fixed <8, 6> precision. 

Bit-

precision 

signed 

Slice 

LUTs 

Slice 

Registers 

DSP 

Util. 

Delay (ns) Power (mW) PDP 

(pJ) Logic Signal Logic Signal Dynamic 

16-bit 369 

95 

76 

162 

- 

- 

2.268 

0.805 

6.783 

1,319 

1.95 

0.55 

1.95 

0.77 

13 

11 

117.7 

23.7 

12-bit 244 

75 

60 

126 

- 

- 

0.966 

0.731 

3.485 

1.108 

1.26 

0.32 

1.26 

0.48 

9 

8 

40.1 

14.7 

8-bit 130 

54 

44 

88 

- 

- 

0.921 

0.755 

2.895 

0.768 

0.66 

0.24 

0.60 

0.36 

6 

6 

22.9 

9.1 

5-bit 53 

35 

28 

58 

- 

- 

0.813 

0.713 

2.277 

0.692 

0.27 

0l.16 

0.21 

0.16 

3 

4 

9.37 

5.62 

 

Conclusion: 

This paper presents efficient techniques for layer-multiplexed artificial neural network (ANN) 

engines that reduce hardware resources and improve performance. It addresses the low 

throughput of conventional multiplexed techniques by proposing an enhanced neuron 

architecture using pipelined CORDIC stages, optimizing the CORDIC architecture for area 

efficiency and reduced critical delay. The ANN engine, written in HDL, is implementable on 

both ASIC and FPGA, allowing users to configure deeper ANNs for object classification with 

user-defined parameters. Detailed analysis for selecting adaptable circuit design parameters is 

provided. The proposed techniques open new opportunities for low-area, low-power, and high-

performance designs, especially in Edge-AI applications. The Virtex-7 FPGA platform was used 

to implement and verify the architecture for MNIST classification, showing improved area, 

power, and throughput performance. The project code will be made open-source to support 

reproducible results and hardware implementation for both ASIC and FPGA. 
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