
International Journal of Early Childhood Special Education (INT-JECSE)

 DOI: 10.48047/INTJECSE/V14I6.425 ISSN: 1308-5581 Vol 14, Issue 06 2022

3311

An Enhanced and Efficient Permission Manager for Android Automotives

V.Sivamurugan, K.R.Uthayan
1sivamuruganv@ssn.edu.in, 2uthayankr@ssn.edu.in

Department of Information Technology,

Sri Siva Subramaniya Nadar College of Engineering, Chennai, India

ABSTRACT
Data privacy has always been important. As more of our data becomes digitized, and we share more

information online, data privacy is taking on greater importance. A single company may possess the

personal information of millions of customers' data that it needs to keep private so that customers’

identities stay as safe and protected as possible, and the company’s reputation remains untarnished. Data

Technology (DT) Privacy Technology is a Data privacy company solely aiming to put back the data

transparency and consent to the user in making every single user of the car aware of what exactly they are

sharing and what should not be shared. The DT Application is based on the framework that focuses on

three important aspects of data sharing: Data Transparency, Consent, and convenience. The framework is

designed in a way that the DT Application has two important features in it - Data monitoring channel and

Data Control channel. Apart from the above features DT Application also focuses on the system

permissions. System permissions play a crucial role in the Android security architecture. They are used to

restrict app operations only to resources (e.g., file system, network) that the user has agreed to share. An

approach aimed at helping Android users and developers to compare the risk level of a set of Android

applications. DT Application assigns risk factors to each of the applications based on the Android

classification of permissions and helps users to control the permissions. This application is divided into

different parts for development. For this particular work, the Permission Module, the view layer and the

view model layer using Model View Controller architecture with data binding is being developed. It also

enables the user to monitor and control the real time permissions (location, camera, microphone etc.) that

an application is accessing to send data through the network. The proposed New Permission Manager

shall give the user complete control over the applications on which permissions that they use and keep the

user aware of the background permission usage situation with Live monitoring.

KEY WORDS: Android Operating System, Automotive Android, Data Control Channel, Data

Transparency, Infotainment System, Permission Manager and Security Architecture.

1. INTRODUCTION

The automotive industry has come a long way with many users’ centric features and facilities. One of the

facilities in automotive is its smart infotainment system. The infotainment system runs on an android

based Operating System and hence the user should be aware of how the data is used so the privacy is

safeguarded. The existing Permission Manager does not provide the user full control and transparency. In

our proposed System, the Permission Manager enables the user to fully control and get Real time alerts

and notifications based on the application usage of dangerous permissions. The need for handling

different permissions and its associated categories is creating ambiguities about which application uses

which all permissions in android automotive OS. Definitive algorithm encompassing permission and its

related services has become a problem/need in the modern android framework. The existing permission

manager is not transparent enough and doesn’t give the user full control over the applications. Thus, our

system was built, to control the data sharing, of what to share and what not, based on the user’s privacy

reasons and to enable System permissions to restrict app operations only to resources that the user has

agreed to share. There is no user-friendly UI to handle permissions effectively in the android framework.

There is no single click control to handle multiple permissions of an application in the android

framework. There is no real time indication of dangerous permission usage by the applications (Live

Monitoring). The enhanced permission manager is used to control Dangerous Permissions with a more

mailto:2thanikachalamv@ssn.edu.in

International Journal of Early Childhood Special Education (INT-JECSE)

 DOI: 10.48047/INTJECSE/V14I6.425 ISSN: 1308-5581 Vol 14, Issue 06 2022

3312

transparent User Interface and also to enable real-time monitoring of critical permissions such as

(location, microphone, camera etc.) along with Voice Alerts and Voice Controls.

2. LITERATURE SURVEY

Branimir Kovacevic et. al [6] have proposed a system for integration of Android into vehicle infotainment

systems. The proposed system offers infotainment functionality, while enabling users to use the device as

a regular Android device. The proposal included a specification of a Java API that should be used to

access in-vehicle related content from Android applications.

Abdul Moiz et. al [1] have examined 14 vulnerabilities out of which 11 were reproducible in Android

Auto as these apps are basically Android mobile apps and run directly in the user's smartphone device.

Whereas for Android Automotive 9 vulnerabilities were reproducible, remaining 5 were not reproducible

either due to permission restrictions or due to API deprecation in Android 9.0 (Pie). They have also

categorized these vulnerabilities as per their type and provide their severity levels. For some of the

vulnerabilities they have provided a compliant solution which can be useful to mitigate some

vulnerabilities while others, like accessing precise location information and deriving speed from it, varies

from app-to-app usage of that information.

Abdul Moiz et. al [2] have investigated the security concerns of in-vehicle apps, specifically, those related

to inter component communication (ICC) among these apps. ICC allows apps to share information via

inter or intra apps components through a messaging object called intent. In case of insecure

communication, Intent can be hijacked or spoofed by malicious apps and user’s sensitive information can

be leaked to a hacker's database. They have investigated the attack surface and vulnerabilities in these

apps and provided a static analysis approach and a tool to find data leakage vulnerabilities. The approach

also provides hints to mitigate these leaks. They have evaluated their approach by analysing a set of

Android Auto apps downloaded from Google Play store, and we reported the validated results on

vulnerabilities identified on those apps. Our proposed approach integrates different classes of automotive

applications and enables secure inter-system communication on top of container-based technology. Srdjan

Usorac et. al [16] have proposed an approach that integrates different classes of automotive applications

and enables secure inter-system communication on top of container-based technology. Their future work

will expand the implementation of our current solution with additional Android features, to run more

demanding Android applications in a secure Linux environment. Edwin Franco Myloth Josephlal et. al [8]

have focused on identifying the vulnerabilities of the automotive infotainment system with respect to its

WIFI capabilities by conducting structured vulnerability tests on the WIFI capabilities of an automotive

infotainment system. To do this, they have analysed the WIFI attack surface and constructed test

environments and used appropriate tools such as (Nmap (open port scan), Nessus (vulnerability scan),

Metasploit) to generate a penetration testing plan to search for vulnerabilities. The vulnerability findings

are well documented in their work. Marco De Vincenzi et. al[13] have described the app structure, its

operations, and the E-Corridor architecture, where vehicle data are analysed. They have also provided an

insight into the possible privacy concerns caused by the usage of personal and vehicle data. The result is

an Android app that has been tested in the project infrastructure with a real vehicle, and that can be used

as a general schema to create other rewarding apps, also for autonomous vehicles, using driving data.

 Bogdan Groza et. al [5] have advocated a role-based access control policy mixed with attributes

that facilitates access to various functionalities of vehicular on-board units from smartphones. They have

also used a rights-based access control policy for in-vehicle functionalities like the case of a file allocation

table of a contemporary OS, in which read, write or execute operations can be performed over various

vehicle functions. Further, to assure the appropriate security, they have also developed a protocol suite

using identity-based cryptography and they relied on group signatures which preserve the anonymity of

group members thus ensuring privacy and traceability. David Herges et. al[7] have proposed Ginger -- an

access control framework for telematics applications. Ginger is context aware, provides enhanced privacy

protection, and realizes advanced access control paradigms. They have also demonstrated Ginger's

feasibility with an Android-based implementation in a functional evaluation consisting of two

International Journal of Early Childhood Special Education (INT-JECSE)

 DOI: 10.48047/INTJECSE/V14I6.425 ISSN: 1308-5581 Vol 14, Issue 06 2022

3313

representative use cases and in a comparative analysis with related approaches. Maryam Nijafi et. al[14]

have proposed a graph-based model to determine abusive applications by automatically analysing the

requested permissions. Their work aims to build a confidence indicator to choose the applications with

more respect for privacy. This model would also inform the user about the possibility of data leakage

risks by assigning a privacy score. Pese et.al [15] have presented an Android Automotive system

architecture and provides guidelines for conducting a high-level security analysis. They have also

described what countermeasures have already been taken by Google to prevent potential attacks and

discuss what still needs to be done in order to offer a secure and privacy-preserving Android experience

for next-generation IVI platforms. Macario et. al [12] have presented a proof-of-concept architecture

developed in cooperation between Magneti Marelli and Politecnico di Torino, whose main contribution is

an automotive-oriented extension of Google Android that provides features for combining extensibility

and safety requirements.

Li, Li, Bissyande et. al [11] have empirically investigated 17 important releases of the Android

framework source code base, and they found that inaccessible APIs are commonly implemented in the

Android framework, which are further neither forward nor backward compatible. Moreover, a small set of

inaccessible APIs can eventually become publicly accessible, while most of them are removed during the

evolution, resulting in risks for such apps that have leveraged inaccessible APIs. Finally, they showed that

inaccessible APIs are indeed accessed by third-party apps, and the official Google Play store has tolerated

the proliferation of apps leveraging inaccessible API methods. John Businge et. al[9] have analysedthe

survival of 467 Eclipse third-party plug-ins altogether having 1,447 versions. They have classified these

plug-ins into two categories: those that depend on only stable and supported Eclipse APIs and those that

depend on at least one of the potentially unstable, discouraged, and unsupported Eclipse non-APIs.

Comparing the two categories of plug-ins, they observed that the plug-ins depending solely on APIs had a

very high source compatibility success rate compared to those that depend on at least one of the non-

APIs. They have also observed that recently released plug-ins that depend on non-APIs also have a very

high forward source compatibility success rate. This high source compatibility success rate is due to the

dependency structure of these plug-ins: recently released plug-ins that depend on non-APIs predominantly

depend on old Eclipse nonAPIs rather than on newly introduced ones. Finally, they showed that the

majority of plug-ins hosted on SourceForge do not evolve beyond the first year of release.

Kathy Wain Yee Au et. al [10] have performed an analysis of the permission system of the

Android smartphone OS in an attempt to begin answering some of these questions. Because the

documentation of Android's permission system is incomplete and because they wanted to be able to

analyse several versions of Android, they developed PScout, a tool that extracts the permission

specification from the Android OS source code using static analysis. PScout overcomes several

challenges, such as scalability due to Android's 3.4-million-line code base, accounting for permission

enforcement across processes due to Android's use of IPC, and abstracting Android's diverse permission

checking mechanisms into a single primitive for analysis. Alexandre Bartel et. al [4] have shown that

naive static analysis fails miserably when applied with off-the-shelf components on the Android

framework. They have then presented an advanced class-hierarchy and field-sensitive set of analyses to

extract this mapping. Those static analyses can analyse the Android framework. They have used novel

domain specific optimizations dedicated to Android. Adrienne Porter Felt et. al [3] have studied Android

applications to determine whether Android developers follow least privilege with their permission

requests. They have built Stowaway, a tool that detects over privilege in compiled Android applications.

Stowaway determines the set of API calls that an application uses and then maps those API calls to

permissions. They have used automated testing tools on the Android API in order to build the permission

map that is necessary for detecting over privilege. They have also applied Stowaway to a set of 940

applications and find that about one-third are overprivileged. We investigate the causes of over privilege

and find evidence that developers are trying to follow least privilege but sometimes fail due to insufficient

API documentation.

 The Existing Permission manager is derived from Google permission manager. It is not

possible to control more than one application at the same time using the existing model. There is no real-

International Journal of Early Childhood Special Education (INT-JECSE)

 DOI: 10.48047/INTJECSE/V14I6.425 ISSN: 1308-5581 Vol 14, Issue 06 2022

3314

time monitoring when an application uses a permission and gets data. The system applications such as

google play store, google maps, google calendar etc. can’t be controlled and by default they are given all

the permissions that are required to get complete control over the device. There is no indication whether

the permissions are used in the background or foreground. The proposed system is designed to overcome

all these limitations.

3. PROPOSED SOFTWARE ARCHITECTURE METHODOLOGY

Figure 3.1 Proposed Software Architecture

The software architecture in Figure 3.1 shows the outline of different steps involved in the working of

data technology (DT) Application. The different features provided by them are Displaying of different

Permissions, Controlling the Permissions and Real time monitoring of permissions. These are achieved

using the two major blocks namely DT Permission Service and DT Foreground Service shown in the

above architecture. To display the permissions of a particular application, the DT PermissionService

(DTPS) is called. DTPS fetches data from Package Manager API which is part of android APIs. To

control the permissions, DTPS uses Permission Manager APIs (System or Hidden APIs). The System

APIs are only visible and accessible to the system applications such as settings for security purposes.

Third Party applications are not allowed to access those APIs which will result in exploitation of the

whole system.

Real time monitoring is a novel feature that we have incorporated in a DT application. For monitoring the

permission usage of an application, the DT Foreground Service is used (DTFS). DTFS runs always in the

background, monitoring the permission activities of the applications through App-ops in android

automotive. Each application in the android architecture has to notify App-ops if they want to use a

permission. The App-ops are used for access control and tracking. DTFS listens to the App ops for

permissions usage and notify the user with alerts in the form of notification and voice alerts.

Notifications are generated and the respective permission can be revoked from the application if needed.

For that particular purpose again DTPS is called and desired action is executed. Google Voice APIs are

called for voice generation and controlling of the permissions.

3.2 DT SERVICES

3.2.1 DT PERMISSIONS SERVICE

DT Permission Service is a service whose prior job is to fetch and control the permission of all the

applications installed or specific applications in the android automotive. The DT Permission Service

International Journal of Early Childhood Special Education (INT-JECSE)

 DOI: 10.48047/INTJECSE/V14I6.425 ISSN: 1308-5581 Vol 14, Issue 06 2022

3315

aggregates and segregates the permissions such as System Permissions and Car Permissions. This service

is also used to control multiple applications at once or multiple permissions at once. It also does control

the permissions by using System APIs.

3.2.2 DT FOREGROUND SERVICE

DT Foreground Service is a service whose prior job is to monitor the permissions of the applications that

are installed in android automotive. The DTFS listens to the App-ops, which has the data of which

application requested which permission at a particular instance of time. This service generates a

notification alert with the respective application permission usage. To control the permission, it calls DT

Permission Service. The alert is automatically discarded when the permission is no longer used and

created if it is used again.

3.2.3 GOOGLE VOICE APIS

3.2.3.1 VOICE ALERTS

Google Speech Services enable text-to-speech ability which is used here to alert the user with a Voice

Alert.

3.2.3.2 VOICE CONTROL

Google Speech to Text APIs with deep links and actions and controlling of permissions over voice is

enabled.

3.2.4 PACKAGE MANAGER APIS

Package Manager API is used for retrieving various kinds of information related to the application

packages that are currently installed on the device. Package Manager includes the application’s name,

description, uid, permissions related information etc.

3.2.5 PERMISSION MANAGER API

Permissions Manager API are hidden or System APIs. They are hidden from the third-party application

developers. A third-party application can’t use hidden APIs. This Permission Manager API contains the

necessary APIs to grant and revoke permission from a specific application. These are accessed only by

the system applications or signed applications. The signed applications obtain the status of system

application once they are signed with the key that is specific to the AOSP build.

3.2.6 APPS-OPS

App-ops are used for two purposes: Access control and tracking. App-ops cover a wide variety of

functionality from helping with runtime permissions, access control and tracking to battery consumption

tracking. App-ops can either be controlled for each uid or for each package. Which one is used depends

on the API provider maintaining this app-op. For any security or privacy related app-op the provider

needs to control the app-op for per uid as all security and privacy is based on uid in Android. App-ops

permissions are platform defined permissions that can be overridden. The security check for app-op

permissions should by default check the permission grant state. If the app-op state is set to

MODE_ALLOWED or MODE_IGNORED, the app-op state should be checked instead of the permission

grant state. Figure 3.2 shows the Appops integration.

International Journal of Early Childhood Special Education (INT-JECSE)

 DOI: 10.48047/INTJECSE/V14I6.425 ISSN: 1308-5581 Vol 14, Issue 06 2022

3316

Figure 2 AppOps Integrations

This functionality allows access by default to apps fulfilling the requirements for a certain permission

level. Still the behaviour can be overridden when needed. App-ops track many important events,

including all accesses to runtime permission protected APIs. This is done by tracking when an app-op was

noted or started. The tracked data can only be read by system components.

Only noteOp(String, int, String)/startOp(String, int, String) are tracked; unsafeCheckOp(String, int,

String) is not tracked. Hence it is important to eventually call noteOp(String, int, String) or

startOp(String, int, String) when providing access to protected operations or data. Some apps are

forwarding access to other apps. E.g., an app might get the location from the system's location provider

and then send the location further to a 3rd app. In this case the app passing on the data needs to call

noteProxyOp(String, String) to signal the access proxying. This might also make sense inside of a single

app if the access is forwarded between two parts tagged with different attribution tags. An app can

register an OnOpNotedCallback to get informed about what accesses the system is tracking for it. As

each runtime permission has an associated app-op this API is particularly useful for an app that wants to

find unexpected private data accesses.

3.3 Front-End Architecture

MVVM (Model, View, View Model) Architecture shown in Figure 3 helps to achieve modularity and so

that the View, Business Logic (View Model) and Data Source are separated. Activity or Fragment is the

View and binded with the View Model and enables continuous streamline transfer of data from the data

source. Repository is the Interface layer between the View Model and the Database. The View Model

doesn’t have any knowledge of where the data is coming from. The repository relates to the database and

initializes the database using Data Access Object (DAO). DAO is a database interface that helps the

repository to communicate with the SQL database. Data Source may be Database or other android APIs

such as Package Manager etc.

International Journal of Early Childhood Special Education (INT-JECSE)

 DOI: 10.48047/INTJECSE/V14I6.425 ISSN: 1308-5581 Vol 14, Issue 06 2022

3317

Figure 3. MVVM Architecture

The View can be completely replaced without changing any of the Business Logic, data source and vice

versa. MVVM provides complete modularity as shown in Figure 4 and provides data abstraction.

Figure 4 MVVM modularity

The project structure contains three major modules: data, services, ui, utils. The module data contains

four modules such as data access objects, interfaces, models, repositories. Services contain Broadcast

Receiver, DT Permission Service and DT Foreground Services. UI module consists of several modules

such as activities, adapters, animations, fragments, interfaces, ui models, uiuitls, view models, views.

4. RESULTS AND SNAPSHOTS FOR IMPLEMENTATION

 Figure 5. is used to show the user interface designed using an Android application. This user

interface shows the different applications installed in the Android Automotive Device. This user interface

is used to access the different devices and to enable the different permissions.

International Journal of Early Childhood Special Education (INT-JECSE)

 DOI: 10.48047/INTJECSE/V14I6.425 ISSN: 1308-5581 Vol 14, Issue 06 2022

3318

Figure 5. UI showing different installed application.

t

Figure 6. UI with different permissions

Figure 6 shows the UI with different permissions for the device namely microphone. The system

permission defines a set of access rights to control the various operations on an application element or

device. The access rights are ACCESS, MODIFY, DELETE, CREATE and PERMISSION. By default,

run time permissions are not granted. The app needs to call Activity. requestPermissions during runtime

to ask the user for the permission. The user might then grant or deny and once the decision is made the

activity is called via Activity.

International Journal of Early Childhood Special Education (INT-JECSE)

 DOI: 10.48047/INTJECSE/V14I6.425 ISSN: 1308-5581 Vol 14, Issue 06 2022

3319

Figure 7.UI showing Notification and Alert

Figure 7 shows the user interface showing Notification and alert messages. They are displayed when DT

foreground service is running. The DTFS listens to the App-ops. This App-ops has the data about the

different applications requested along with permission at a particular instance of time. This service

generates a notification alert with the respective application permission usage. To control the permission,

it invokes the DT Permission Service. The alert is automatically discarded when the permission is no

longer used or needed and created if it is used again.

Figure 8. showing UI activity

Figure 8 shows the UI design based on either activity or fragment. This is used to get the permission from

the user and to save the permission. Thus, permission for the different devices associated with the

application is either enabled or disabled based on the permission granted by the user.

5. CONCLUSION AND FUTURE WORK

Smart infotainment systems are the focus of this work. The existing Permission Manager does not provide

the user full control and transparency. Therefore, the user should be aware of how the data is used so the

privacy is safeguarded. In our implemented System, the Permission Manager enables the user to fully

control and get Real time alerts and notifications based on the application usage of dangerous

International Journal of Early Childhood Special Education (INT-JECSE)

 DOI: 10.48047/INTJECSE/V14I6.425 ISSN: 1308-5581 Vol 14, Issue 06 2022

3320

permissions. This work can be further enhanced by adding Android system intelligence to the system.

This will enable us to use the system permission to provide smart predictions.

REFERENCES:

1. Abdul Moiz and Manar H. Alalfi, “An Approach for the Identification of Information Leakage in

Automotive Infotainment systems”, IEEE 20th International Working Conference on Source

Code Analysis and Manipulation (SCAM), Vol. 2020, pp. 110-114, 2020.

2. Abdul Moiz and Manar H. Alalfi, “ A Survey of Security Vulnerabilities in Android Automotive

Apps”,IEEE/ACM 3rd International Workshop on Engineering and Cybersecurity of Critical

Systems (EnCyCriS), Vol.2022, pp. 17-24, 2022.

3. Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song and David Wagner, "Android

permissions demystified", Proceedings of the 18th ACM conference on Computer And

communications security, pp. 627-638, 2011.

4. Alexandre Bartel, Jacques Klein, Martin Monperrus and Yves Le Traon, "Static analysis for

extracting permission checks of a large scale framework: The challenges and solutions for

analyzing android", Software Engineering IEEE Transactions on, vol. 40, no. 6, pp. 617-632,

2014.

5. Bogdan Groza, Tudor Andreica, Adriana Berdich, Pal-Stefan Murvay and Eugen Horatiu Gurban,

“PRESTvO: PRivacy Enabled Smartphone Based Access to Vehicle On-Board Units”, IEEE

Access, Vol.8, pp. 119105-119122, 2022.

6. Branimir Kovacevic, Marko Kovacevic, Tomislav Maruna and Davor Rapic, “ Android4Auto: A

proposal for integration of Android in vehicle infotainment systems”, IEEE International

Conference on Consumer Electronics (ICCE), Vol.2016, pp. 99-100, 2016.

7. David Herges, Naim Asaj, Bastian Könings, Florian Schaub and Michael Weber, “Ginger: An

Access Control Framework for Telematics Applications”, IEEE 11th International Conference on

Trust, Security and Privacy in Computing and Communications, Vpl.2012, pp. 474-481, 2012.

8. Edwin Franco Myloth Josephlal and Sridhar Adepu, “Vulnerability Analysis of an Automotive

Infotainment System's WIFI Capability, IEEE 19th International Symposium on High Assurance

Systems Engineering (HASE), Vol.2019, pp. 241-246, 2019.

9. John Businge, Alexander Serebrenik and Mark van den Brand, “Survival of eclipse third-party

plug-ins", Software Maintenance (ICSM) 2012 28th IEEE International Conference on, pp. 368-

377, 2012.

10. Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang and David Lie, “Pscout: analyzing the android

permission specification", Proceedings of the 2012 ACM conference on Computer and

communications security CCS '12, pp. 217-228, 2012.

11. Li, Li, Bissyande, Tegawende F, Traon , Yves Le and Klein, Jacques., “Accessing inaccessible

Android apis: An empirical study,” 2016 IEEE International Conference on Software

Maintenance and Evolution (ICSME), doi: 10.1109/ICSME.2016.35.

12. Macario, M. Torchiano and M. Violante, "An in-vehicle infotainment software architecture based

on google android," 2009 IEEE International Symposium on Industrial Embedded Systems,

2009, pp. 257-260, doi: 10.1109/SIES.2009.5196223.

13. Marco De Vincenzi, “DRIVES: Android App for Automotive Customized Services”, 2022

IEEE/ACS 19th International Conference on Computer Systems and Applications (AICCSA),

Vol.2022, pp. 1-8, 2022.

14. Maryam Nijafi, Marc Lemercier & Lyes Khoukhi, “Data leakage prevention model for vehicular

networks”, 18th International Conference on Wireless and Mobile Computing, Networking and

Communications (WiMob), Vol.2022, pp. 124-129, 2022.

15. Pese, M., Shin, K., Bruner, J., and Chu, A., “Security Analysis of Android Automotive,” SAE

Technical Paper 2020-01-1295, 2020, doi:10.4271/2020-01-1295.

International Journal of Early Childhood Special Education (INT-JECSE)

 DOI: 10.48047/INTJECSE/V14I6.425 ISSN: 1308-5581 Vol 14, Issue 06 2022

3321

16. Srdjan Usorac and Bogdan Pavkovic, “Linux container solution for running Android applications

on an automotive platform”, Zooming Innovation in Consumer Technologies Conference (ZINC),

Vol.2021, pp. 209-213, 2021.

